EE2003 Circuit Theory

Chapter 1 Basic Concepts

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic Concepts - Chapter 1

- 1.1 Systems of Units.
- 1.2 Electric Charge.
- 1.3 Current.
- 1.4 Voltage.
- 1.5 Power and Energy.
- 1.6 Circuit Elements.

1.1 System of Units (1)

Six basic units

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	Kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd

1.1 System of Units (2)

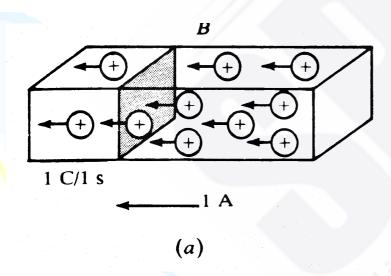
The derived units commonly used in electric circuit theory

Quantity	Unit	Symbol
electric charge electric potential	coulomb	C V
resistance conductance	ohm siemens	Ω S
inductance capacitance	henry	H F
frequency force	hertz newton	Hz N
energy, work	joule watt	J W
magnetic flux magnetic flux density	weber tesla	Wb T

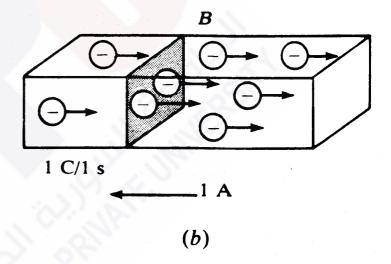
Prefix	Symbol
giga mega kilo centi milli micro nano pico	G M k c m μ n
	giga mega kilo centi milli micro nano

Decimal multiples and submultiples of SI units

1.2 Electric Charges


- Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- The charge e on one electron is negative and equal in magnitude to 1.602×10^{-19} C which is called as electronic charge. The charges that occur in nature are integral multiples of the electronic charge.

1.3 Current (1)


- Electric current i = dq/dt. The unit of ampere can be derived as 1 A = 1C/s.
- A direct current (dc) is a current that remains constant with time.
- An alternating current (ac) is a current that varies sinusoidally with time. (reverse direction)

1.3 Current (2)

The direction of current flow

Positive ions

Negative ions

1.3 Current (3)

Example 1

A conductor has a constant current of 5 A.

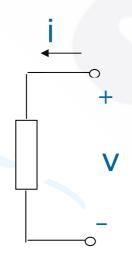
How many electrons pass a fixed point on the conductor in one minute?

1.3 Current (4)

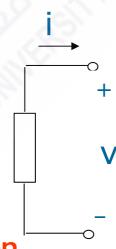
Solution

Total no. of charges pass in 1 min is given by 5 A = (5 C/s)(60 s/min) = 300 C/min

Total no. of electronics pass in 1 min is given


$$\frac{300 \text{ C/min}}{1.602 \times 10^{-19} \text{ C/electron}} = 1.87 \times 10^{21} \text{ electrons/min}$$

1.4 Voltage (1)


- Voltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts (V).
- Mathematically, $v_{ab} = dw/dq$ (volt)
 - w is energy in joules (J) and q is charge in coulomb (C).
- Electric voltage, v_{ab_i} is always across the circuit element or between two points in a circuit.
 - v_{ab} > 0 means the potential of a is higher than potential of b.
 - $-v_{ab}$ < 0 means the potential of a is lower than potential of b.

1.5 Power and Energy (1)

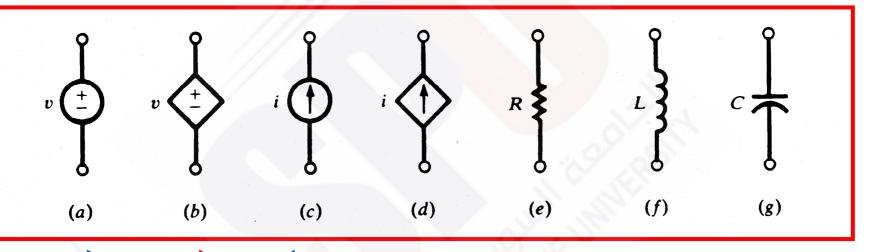
- Power is the time rate of expending or absorbing energy, measured in watts (W).
- Mathematical expression: $p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = vi$

P = +vi absorbing power

Passive sign convention

1.5 Power and Energy (2)

The law of conservation of energy


$$\sum p = 0$$

- Energy is the capacity to do work, measured in joules (J).
- Mathematical expression $w = \int_{t_0}^t p dt = \int_{t_0}^t vidt$

1.6 Circuit Elements (1)

Active Elements

Passive Elements

- A dependent source is an active element in which the source quantity is controlled by another voltage or current.
- They have four different types: VCVS, CCVS, VCCS, CCCS. Keep in minds the signs of dependent sources.

1.6 Circuit Elements (2)

Example 2

Obtain the voltage v in the branch shown in Figure 2.1.1P for $i_2 = 1$ A.

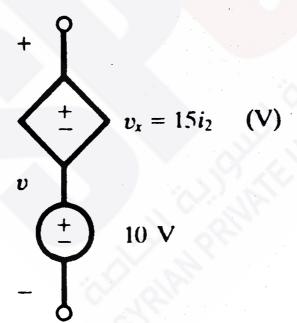


Figure 2.1.1P

1.6 Circuit Elements (3)

Solution

Voltage v is the sum of the current-independent 10-V source and the current-dependent voltage source v_x .

Note that the factor 15 multiplying the control current carries the units Ω .

Therefore,
$$v = 10 + v_x = 10 + 15(1) = 25 \text{ V}$$